

Journal of Alloys and Compounds 317–318 (2001) 428–432

ournal of
ALLOYS
AND COMPOUNDS

www.elsevier.com/locate/jallcom

Theoretical study of structural stability and magnetism in the $Pd₃Mn$ antiphase

Janusz Tobola^{a,b, *}, Pierre Pécheur^a

a *Laboratoire de Physique des Materiaux ´ ´* , *Ecole des Mines*, *Parc du Saurupt*, ⁵⁴⁰⁴² *Nancy Cedex*, *France* b *Faculty of Physics and Nuclear Techniques*, *University of Mining and Metallurgy*, *Al*. *Mickiewicza* 30, ³⁰-⁰⁵⁹ *Krakow´* , *Poland*

Abstract

Relative stability of L_1 , D_2 and D_3 structures as well as magnetic properties are studied in the Pd₃Mn antiferromagnet using the Korringa–Kohn–Rostoker band structure calculations within the local-spin-density approach. The DO_{23} phase of Pd₃Mn is found to be the most stable from the total energy analysis if accounting for the spin-polarisation. The equilibrium lattice constant in DO_{23} lies between a_{eq} of the L_2 and DO_{22} phases, being about 1% larger than the experimental value. Noteworthy, the total energies of the ferromagnetic DO_{22} and DO_{23} phases of Pd₃Mn markedly approach, when going down to the experimental lattice constant. In ferromagnetic state of Pd₃Mn the following magnetic moments (in μ_B) 4.08, 0.12, 0.16 and 0.15 are computed on Mn and 4*c*, 4*d* and 4*e* sites of Pd, respectively. In antiferromagnetic state, albeit no magnetic moment on Pd (4*d*), the KKR values are close to the ferromagnetic results, namely (in μ_B) 3.99 on Mn, 0.18 on Pd (4*c*) and 0.16 on Pd (4*e*). The electronic structure and magnetic properties of Pd₃V and Pd₃Fe in the *L1*₂, *DO*₂, phases are also reported. The KKR calculations show that the ground state of Pd₃V is either magnetic (*L1*₂) or non-magnetic (*DO*₂₂). Conversely, Pd₃Fe exhibits ferromagnetic properties in both crystal structures with the Fe and Pd magnetic moments (in $\mu_{\rm B}$) 3.28, 0.29 and 3.22, 0.22, 0.26 in *L1*₂ and *DO*₂₂, respectively. Both structural and magnetic properties derived from the band structure KKR calculations generally correspond well to the experimental data. \oslash 2001 Elsevier Science B.V. All rights reserved.

Keywords: Band structure; KKR method; Palladium compounds; Magnetic properties; Total energy calculations; Structural stability

 $Pd₃T$ systems (*T*=3d element), crystallises in the longrange tetragonal 'antiphase' DO_{23} structure (ZrAl₃-type, SG: *I*4/*mmm*) [1] with the lattice parameters close to the ideal ratio $c/a = 4$. This phase (Fig. 1) is a crystallographic combination of a simple cubic L_2 structure (Cu₃Al-type, SG: *Pm3m*) and a tetragonal body-centred DO_{22} structure $(A1₃Ti-type, SG: *I4mm*), observed in other $Pd₃T$ systems.$ A long-range distortion occurring in $Pd_{1-x}Mn_x$ at $x \approx 0.25$ was first interpreted using a nearly free electron concept of 'accommodating' of the Fermi surface to the Brillouinzone boundaries [2]. The relative stability of the L_1 ₂, D_2 ₂₂ and DO_{23} structures, in view of the band theory, has been primarily studied in the transition metal aluminides $MAI₃$ [3,4]. As far as $Pd₃Mn$ is concerned, earlier electronic structure calculations were performed for the cubic structure by the non-self consistent OLCAO method [5] and the self-consistent LMTO method [6] but without including

1. Introduction the spin-polarisation. However, both methods correctly predicted a magnetic ordering in Pd_3Mn taking into It is known that the Pd₃Mn compound, unlike other account density of states at the Fermi energy $N(E_F)$ and the

Fig. 1. Crystal structure of the L_1 , DO_{22} and DO_{23} phases of Pd₃T *Corresponding author. Tel.: 148-12-6172321; fax: 148-12-6340010. compounds. Open and grey circles represents Pd and *T* atoms, respective-

E-*mail address*: tobola@ftj.agh.edu.pl (J. Tobola). ly.

	LI_{2}	DO_{22}	DO_{22}
Pd	$3c: 0, \frac{1}{2}, \frac{1}{2}$	$2b: 0, 0, \frac{1}{2}$ 4d: $0, \frac{1}{2}, \frac{1}{4}$	$4c: 0, \frac{1}{2}, 0; \frac{1}{2}, 0, 0$ 4d: $0, \frac{1}{2}, \frac{1}{4}; \frac{1}{2}, 0, \frac{1}{4}$
	1a: 0, 0, 0	2a: 0, 0, 0	$4e: 0, 0, z_{\text{Pd}}; 0, 0, -z_{\text{Pd}}$ 4e: 0, 0, z_i ; 0, 0, $-z_i$

tion on selection of crystallographic structure type $(L1, \text{ or } \text{ment values},$ presented here, correspond to the KKR results DO_{22} in Pd₃T (T=3d element) have been examined by obtained at the experimental lattice constants. the sophisticated LAPW calculations [7,8]. The total energy analysis clearly revealed, that the spin-polarisation was crucial to determine accurately ground state crystal structures for the Pd₃*T* compounds. Noteworthy, the DO_{23} **3. Results and discussion** structure of $Pd₃Mn$ was not considered in the previous theoretical works. This inspired us to investigate electronic 3.1. *Structural stability* structure and magnetic properties of $Pd₃Mn$ in a systematic way, within the L_1 , D_2 and D_3 phases, using the Fig. 2 shows non-polarised DOS in the three structures local-spin-density (LSD) approximation. Furthermore, we report the electronic structure and magnetism in $Pd₃V$ and Pd_3 Fe considering both $L1_2$ and DO_{22} structures, making a comparison with the titled compound.

2. Computational details

We have carried out fully charge and spin self-consistent KKR computations on Pd₃Mn within the L_2 , DO_{22} and DO_{23} phases as well as on Pd₃Fe and Pd₃V in the $L1_2$ and DO_{22} phases. The Pd and *T* atoms occupy the crystallographic sites in the above-mentioned structures as listed in Table 1. The total energy KKR study was done in the muffin–tin (MT) geometry as follows: non-overlapping MT radii were assumed to be equal for Pd and Mn atoms, resulting in a packing ratio ($\Sigma V_{MT}^i/V_{WS}$) near 74%; the *c* lattice parameter was changed coherently with *a*, fixing the ratio of $c/a = 2$ and $c/a = 4$, in DO_{22} and DO_{23} , respectively. The experimental lattice parameters [11] measured in the $Pd₃T$ compounds (Table 2) justify using the ideal value of *c*/*a* in our electronic structure calculations. The selfconsistent cycles were repeated until maximum difference between input–output potentials was less than 1 mRy. For

Table 2 The experimental lattice parameter *a* and c/a in Pd₃*T* (*T*=V, Mn, Fe) $[11]$ ^a

Table 1
Crystallographic positions occupied by Pd and T atoms in the L_2 , DQ_{22} , Rarth-Hedin form [121] total site, and Ldecomposed Crystallographic positions occupied by Pd and T atoms in the LI_2 , DO_{22} ,
 DO_{23} phases of Pd₃T (z_{pd} = 0.375 and z_{Mn} = 0.125 are used in the KKR

study of the Pd₃Mn antiphase)
 $\frac{12}{13}$.
 $\frac{12}{13}$. $\begin{array}{c|c|c|c|c|c|c|c|c} \hline L1_2 & DO_{22} & DO_{23} & & & & & \\ \hline \hline R1 & 3c: 0, \frac{1}{2}, \frac{1}{2} & 2b: 0, 0, \frac{1}{2} & 4c: 0, \frac{1}{2}, \frac{1}{2} & 0, \frac{1}{2}, \frac{1}{$ were deduced from the total energy parabola for the three Stoner parameters. Recently, the influence of spin-polarisa- mentioned structures; all DOS spectra and magnetic mo-

Korringa–Kohn–Rostoker (KKR) method [9,10] and the of the Pd₃Mn compound. At first sight, we conclude that

Fig. 2. Non-polarised KKR density of states in the Pd₃Mn phases. Solid, dotted and dashed lines show total, Mn and Pd (average) DOS contribu-^a Ideal c/a ratio is given in parenthesis. tions, respectively (E_F is at zero).

density of states in the vicinity of E_F is markedly increased (80.5), DO_{22} (52.0) and DO_{23} (70.1) phases, as well as at in the LI_2 cubic structure unlike the tetragonal body-
centres of gravity of the conduction in the LI_2 cubic structure unlike the tetragonal body-Mn, being highly peaked in the vicinity of E_F , and on Pd,

constant variations of Mn and Pd magnetic moments (in $\mu_{\rm B}$) for the DO_{23} phase. (Table 3), reflect subtle modifications of the respective

centred DO_{22} and DO_{23} phases. Generally, we notice that that the antiphase is not predicted correctly as the most the conduction band is formed basically from d-states on stable structure of Pd_3Mn (at $T=0$ K). This prompted us to Mn, being highly peaked in the vicinity of E_F , and on Pd, perform the total energy spin-polarised K constituting mostly lower lying bands. Peculiarly, some (in ferromagnetic state) at three lattice parameters *a* in the features on DOS in the antiphase structure can be related above-mentioned crystal phases of Pd₃Mn. From the 50 to the 30 to the 3 to the DOS characteristics found in the simple cubic and lowest lying $E_{\text{tot}}(a)$ parabola (Fig. 3), corresponding to the tetragonal-body centred structures. A large d-like peak of antiphase structure, we deduce the equi antiphase structure, we deduce the equilibrium lattice Mn–DOS found in the *L1*₂ phase also appears, but is less constant $a_{eq} = 3.94$ Å. The theoretical value remains in fair pronounced, in the antiphase Pd₃Mn. Looking at $N(E_F)$ agreement with the experimental value a_{ex pronounced, in the antiphase Pd₃Mn. Looking at $N(E_F)$ agreement with the experimental value $a_{exp} = 3.913 \text{ Å}$ [11]. values (in parenthesis in states/Ry/spin/f.u.) in the L_2 Interestingly, the a_{eq} value gained in DO_{23} lies between the corresponding a_{eq} obtained in the simple cubic (3.95) A) and tetragonal body-centred structures (3.90 A). Notably, at the experimental lattice constant the total energies $E_{\text{tot}}(DO_{23})$ and $E_{\text{tot}}(DO_{22})$ are found very close. If analysing in detail contributions to the total energy in these two structures, no particular differences are noticed as far as the band term E_{band} is concerned (unlike the L_2 phase). Hence, the preference of the antiphase structure in $Pd₃Mn$ is mainly due to a subtle balance between potential and kinetic contributions, which are rather different in the DO_{22} and DO_{23} phases. Interestingly, from the KKR computations of the $Pd₃Mn$ in antiferromagnetic state, we see that all contributions to the total energy slightly decrease in respect to the ferromagnetic state ($\delta E \approx 8$ mRy). Besides, the $E_{\text{tot}}(a)$ functions in the DO_{22} and DO_{23} structures display rather close curvatures, which indicates close values of bulk modulus, unlike the L_1 phase.

> In Fig. 4 the non-polarised DOS for Pd_3V and Pd_3Fe both in the LI_2 and DO_{22} phases are presented. It seems intriguing that the $P = N(DO_{22})/N(L1_2)|_{E=2}$ factor, defined as a ratio of DOS values at the Fermi energy in the DO_{22} and L_2 structures, increases in systematic way when filling d-like states in the $Pd₃T$ compounds. Thus, when passing from Pd_3V through Pd_3Mn to Pd_3Fe , *P* reaches values of 0.24, 0.64 and 1.01, respectively. These ratios remain in agreement with the previous LAPW study [7] $(P=0.32,$ 0.63 and 1.06).

3.2. *Magnetic properties*

From experiment, the Pd₃V (DO_{22}), Pd₃Mn (DO_{23}) and $Pd₃Fe$ ($LI₂$) compounds show paramagnetic, antiferromagnetic and ferromagnetic properties, respectively.

The total and site-decomposed DOS in the ferromagnetic $Pd₃Mn$ derived from the spin-polarised KKR calculations is shown in Fig. 5. We observe that d-states on Mn are almost completely polarised, giving a large magnetic moment (4.08 $\mu_{\rm B}$). Consequently, the low $N(E_{\rm F})$ is seen on Mn site both for up- and down-spin electrons. On the other Fig. 3. Total energy parabola in the L1₂, DO_{22} (c/a=2) and DO_{23} hand, the Fermi level lies on the slope of d-states on Pd,
(c/a=4) phases of Pd₃Mn derived from the KKR method. Below, lattice which significantly

Fig. 4. Non-polarised KKR density of states in the *L1*₂ and *DO*₂, phases of Pd₃V and Pd₃Fe. Total DOS is given in states/Ry/spin/f.u. Solid, dotted and dashed lines show total, *T* and Pd (average) DOS contributions, respectively (E_F is at zero).

Pd–DOS (Fig. 5). Note, that in the considered phases of In the antiferromagnetic state computations a magnetic Pd₃Mn, both palladium and manganese atoms have identi-
cell as refined in Ref. [1] has been taken into account.
cal nearest neighbours in the first shell, namely Pd (8) Thus the tetragonal body-centred symmetry is no mor Pd⁺⁴ Mn) and Mn (12 Pd). Thus, some changes of valid, and the tetragonal simple structure has been used. electronic structure and magnetic properties observed in The magnetic moment on Mn (3.99 μ_B) is close to the the LI_2 , DO_{22} , DO_{23} structures correspond to the next value computed in the FM state (Table 3). Howev the LI_2 , DO_{22} , DO_{23} structures correspond to the next nearest neighbours effects. Furthermore, from the calcula-
tions in Pd₃Mn at various lattice constants, we conclude only on the (4c) and (4e) sites, unlike the (4d) one, being tions in Pd₃Mn at various lattice constants, we conclude only on the (4*c*) and (4*e*) sites, unlike the (4*d*) one, being that μ_{Mn} and μ_{Pd} vary in opposite ways when *a* increases cancelled due to the s that μ_{Mn} and μ_{Pd} vary in opposite ways when *a* increases cancelled due to the symmetry of surrounding μ_{Mn} . Our KKR results remain in excellent agreement with the earlier

Thus the tetragonal body-centred symmetry is no more KKR results remain in excellent agreement with the earlier

^a The antiferromagnetic results for $Pd_3Mn (DO_{23})$ are given in parenthesis.

Fig. 5. Spin-polarised total and site-decomposed KKR DOS in the ¹¹⁹⁵.
Pd₃Mn antiphase (FM, ferromagnetic; AFM, antiferromagnetic). A ^[15] P. Onnerud, Y. Andersson, R. Tellgren, P. Nordblad, J. Solid State Chem. 128 (1997) 109.

vertical line marks *E*_E.

neutron diffraction studies in Pd₃Mn (4.0 $\mu_{\rm B}$, 0.2 $\mu_{\rm B}$ [1] and 4.1 $\mu_{\rm B}$, 0.15 $\mu_{\rm B}$ [14]). However, later experimental studies have detected more complex magnetic structures in this compound [15].

 Pd_2V in the considered structures is found near the magnetic instability, according to an analysis of $E_{\text{tot}}(a)$ and non-polarised DOS spectra (Fig. 4). In the L_2 phase of $Pd₃V$, electronic bands split upon inclusion of the spinpolarisation due to a large d -DOS at E_F on V (Fig. 4), resulting in a total magnetic moment of 1.29 $\mu_{\rm B}$ ($\mu_{\rm V}$ = 1.34 $\mu_{\rm B}$, $\mu_{\rm Pd}$ = -0.03 $\mu_{\rm B}$). Conversely, in the tetragonal bodycentred phase of Pd₃V, rather low non-polarised DOS at E_F (Fig. 3) gives a non-magnetic ground state.

The KKR calculations in $Pd₃Fe$ show that magnetic properties should appear both in L_1 and D_2 structures, with the total magnetic moments: 4.09 μ_B and 3.93 μ_B , respectively.

The local magnetic moments in the DO_{22} of Pd_3Fe are found (in μ_B) 3.21, 0.21 and 0.27, on Fe, Pd (2*b*) and Pd (4*d*), respectively. The values are rather close to those calculated in the L_2 phase: 3.25 μ_B (Fe) and 0.29 μ_B (Pd). As Pd in LI_2 and Pd (4*d*) in DO_{22} have the same next nearest atomic neighbours, the close values of the respective magnetic moments are calculated.

References

- [1] J.W. Cable, E.O. Wollan, W.C. Koehler, H.R. Child, Phys. Rev. 128 (1962) 2118.
- [2] H. Sato, R.S. Toth, Phys. Rev. 139 (1965) 1581.
- [3] A.E. Carlsson, P.J. Meschter, J. Mater. Res. 4 (1989) 1060.
- [4] J. Xu, A.J. Freeman, Phys. Rev. B 40 (1989) 11927.
- [5] S. Jaswal, Solid State Common. 52 (1984) 127.
- [6] T. Nautiyal, S. Auluck, J. Phys. Condens. Matter 1 (1989) 2211.
- [7] Z.W. Lu, B.M. Klein, A. Zunger, Phys. Rev. Lett. 75 (1995) 1320.
- [8] C. Wolverton, A. Zunger, Phys. Rev. B 52 (1995) 8814.
- [9] S. Kaprzyk, Acta Phys. Pol. A 91 (1997) 135.
- [10] A. Bansil, S. Kaprzyk, P.E. Mijnarends, J. Tobola, Phys. Rev. B 60 (1999) 13396.
- [11] P. Villars, L.D. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases, ASM, Metals Park, OH, 1991.
- U. von Barth, L. Hedin, J. Phys. C 5 (1972) 1629.
- [13] S. Kaprzyk, P.E. Mijnarends, J. Phys. C 19 (1986) 1283.
- [14] E. Kren, G. Kadar, M. Marton, Solid State Commun. 10 (1972)
-